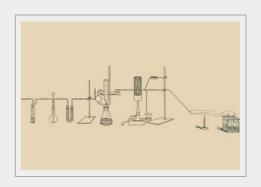
PORTAL DE OFERTA TECNOLÓGICA

SISTEMA PARA LA DETERMINACIÓN SIMULTÁNEA DE CATIONES Y ANIONES EN MUESTRAS ACUOSAS MEDIANTE ICP-AES

P TECNOLOGÍA PATENTADA


DATOS DE CONTACTO:

Relaciones con la Empresa Oficina de Transferencia de Resultados de la Investigación-OTRI Universidad de Alicante Tel.: +34 96 590 99 59 Email: areæmpresas@ua.es http://innoua.ua.es

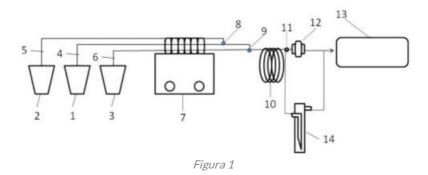
RESUMEN

El Grupo de Investigación de Análisis de Polímeros y Nanomateriales de la Universidad de Alicante ha diseñado un sistema para la determinación de forma simultánea de cationes y aniones en muestras acuosas mediante ICP-AES. Este dispositivo permite el uso de un solo sistema, mientras que los procedimientos actuales necesitan utilizar varias técnicas y equipos para la determinación de iones en muestras acuosas.

Se buscan empresas interesadas en explotar la tecnología diseñada y/o en realizar proyectos de I+D+i para adaptar esta tecnología a sus necesidades concretas.

DESCRIPCIÓN TÉCNICA

Mediante el estado actual de la técnica, la determinación del balance iónico de muestras acuosas exige la utilización de numerosos equipos de análisis químico, algunos de ellos de elevado coste. Además, el tiempo necesario para la realización de este tipo de determinaciones es elevado. Las dos necesidades expuestas con anterioridad (elevado tiempo de análisis y necesidad de equipos instrumentales) desembocan en un elevado coste económico del proceso de determinación del balance iónico de muestras acuosas. Se hace necesario a la luz de lo anteriormente expuesto, buscar una solución rápida y económica para la determinación de aniones y cationes en muestras acuosas.


El Grupo de Investigación de Análisis de Polímeros y Nanomateriales de la Universidad de Alicante ha diseñado un sistema que se adapta a un equipo de emisión atómica por plasma acoplado por inducción (ICP-AES).

El sistema consiste en tres contenedores, uno para la muestra a analizar, otro para nitrato de plata y el último para ácido nítrico; tres conducciones y dos uniones en forma de T de politetrafluoroetileno (PTFE); una bomba peristáltica para aspirar las disoluciones; un reactor que consiste en un capilar de reacción; un filtro de separación; una válvula y un separador de fases conectado en paralelo al resto del sistema, que sólo se utiliza para aquellas muestras con alto contenido en materia orgánica.

En la figura 1 se puede observar una descripción del sistema desarrollado. El esquema incluye:

- Los tres contenedores comentados (contenedor de muestra (1), contenedor de nitrato de plata (2) y un último contenedor de ácido nítrico (3)).
- Conducción de muestra (4), conducción de nitrato de plata (5) y conducción de ácido nítrico (6), las tres de PTFE, para conducir las disoluciones de los contenedores antes descritos hasta el ICP-AES (13).
- Bomba peristáltica (7), uniones (8 y 9) y un reactor (10) que consiste en un capilar de reacción donde tienen lugar los procesos de mezclado de las tres disoluciones aspiradas y se completan las reacciones químicas.

• Filtro de separación, intercambiable, en PTFE (12), ICP-AES (equipo emisión atómica comercial al que se acopla el sistema diseñado y, separador de fases (14), en paralelo y para muestras con alto contenido de carga orgánica.

El procedimiento se lleva a cabo a través de las siguientes etapas:

- a) Mezclado: Mediante una bomba peristáltica se aspira un flujo constante del contenedor de muestra y del de nitrato de plata. Ambos flujos se unen mediante una unión en forma de T y posteriormente esa mezcla se une también a la conducción que procede del contenedor de ácido nítrico mediante otra unión en forma de T.
- b) Reacción: La mezcla de las tres disoluciones pasa por el reactor donde tienen lugar las derivatizaciones químicas.
- c) Separación: Según el contenido en materia orgánica de la muestra, se usa un filtro de separación o un separador de fases. La mezcla pasa por el filtro de separación antes de llegar al equipo ICP-AES. Para muestras con elevado contenido en materia orgánica, la mezcla de reacción se hace pasar además por un separador de fases.
- d) Medida: La mezcla llega al equipo ICP-AES donde tiene lugar la medida de la intensidad de señal a cada longitud de onda correspondiente, según el analito que se vaya a determinar.

Finalmente la mezcla de las tres disoluciones pasa por el reactor donde se llevan a cabo las derivatizaciones que permiten la determinación de cloruro, determinación de bicarbonato, determinación de sulfato y determinación de metales, de manera simultánea mediante ICP-AES.

El sistema presentado es fácilmente automatizable mediante la utilización de un brazo robotizado y un carrusel en el que se incluirían las muestras. Para conseguir esto basta con adaptar el sistema a un automuestreador comúnmente empleado para la realización de análisis de rutina mediante ICP-AES.

A continuación se presenta una comparativa del sistema desarrollado con el método convencional utilizado:

	SISTEMA DESARROLLADO	MÉTODO CONVENCIONAL
Preparación de muestra	Ninguna	Filtrado (1 min)
Calibrado	Simultáneo (3 min por patrón, 5 patrones)	Metales (2 min por patron, 5 patrones)
		Aniones (t _R Sulfato: 11 min por patrón, 5 patrones)
		Bicarbonato (Estandarización de HCI, 30 min)
Análisis de muestras	Simultáneo (3 min)	Metales (2 min)
		Aniones (t _R Sulfato: 11 min)
		Bicarbonato (20 min)
Tiempo total de calibrado	15 min	95 min
Tiempo total por muestra analizada	3 min	34 min
Muestras analizadas por jornada de 8 h haciendo un calibrado	155 muestras	11 muestras

VENTAJAS Y ASPECTOS INNOVADORES

PRINCIPALES VENTAJAS

- Sistema fácilmente automatizable.
- Empleo un solo equipo (ICP-AES) en lugar de tres métodos distintos (ICP-AES, valoración ácido-base y cromatografía iónica) para la determinación de cationes y aniones.

- Se reduce notablemente el tiempo de análisis respecto al tiempo que se emplea en la actualidad en este tipo de análisis. Por tanto, se analiza un mayor número de muestras por unidad de tiempo.
- Se puede aplicar a análisis en todo tipo de muestras acuosas como en muestras de sangre, muestras de suelos, suplementos alimenticios, etc.

ASPECTOS INNOVADORES

La principal innovación de este sistema es el desarrollo de un sistema que permite preparar e introducir la muestra de forma que se puedan analizar cationes y aniones con un solo equipo comercial (ICP-AES).

ESTADO ACTUAL

La tecnología se encuentra desarrollada a nivel de laboratorio y probada con equipos comerciales de ICP-AES.

APLICACIONES DE LA OFERTA

Los siguientes sectores serían de aplicación para esta tecnología:

- Análisis, Gestión y Tratamiento del Agua y de Residuos
- Análisis Químico
- Industria Química

COLABORACIÓN BUSCADA

- Acuerdo de licencia de patente para los derechos de uso, fabricación o comercialización de la tecnología.
- Acuerdo de proyecto de I+D (cooperación técnica) para adaptar la tecnología a las necesidades de la empresa, o aplicarlas a otros sectores.
- Acuerdo de distribución de la tecnología con asistencia técnica proporcionada por la empresa.
- Acuerdo de subcontratación (asistencia técnica, planta llave en mano, formación, etc.) con otra empresa.
- Posible spin-off (buscando socios).

DERECHOS DE PROPIEDAD INTELECTUAL

El dispositivo diseñado se encuentra protegido bajo patente:

Número de solicitud: P201300170
Fecha de solicitud: 18/02/2013

PERFIL DEL GRUPO DE INVESTIGACIÓN

El grupo de investigación de Análisis de Polímeros y Nanomateriales está integrado por 22 personas, y ofrece las siguientes capacidades de investigación:

- Preparación de muestras de materiales polímeros.
- Caracterización estructural, térmica y de superficie en materiales polímeros.
- Análisis de aditivos en polímeros.
- Estudios de degradación y estabilización en polímeros.
- Desarrollo y caracterización de polímeros biodegradables para aplicación en envasado de alimentos.
- Desarrollo de bionanocompuestos en base ácido poliláctico.
- Estudios de migración en sistemas de envasado para alimentos.
- Desarrollo de sistemas de envasado activo con aditivos de origen natural.
- Uso de aceites vegetales como aditivos en polímeros.

- Desarrollo de sistemas de introducción de muestras para ICP-AES e ICP-MS.
- Acoplamiento Cromatografía de Líquidos de Alta Resolución técnicas de ICP.
- Cromatografía de líquidos a elevada temperatura (HTLC).
- Análisis de combustibles derivados del petróleo y biocombustibles.
- Análisis de productos farmacéuticos.
- Análisis de alimentos.
- Análisis de aguas.
- Especiación de compuestos organometálicos.
- Desinfección de alimentos.

SECTORES DE APLICACIÓN (3)

Contaminación e Impacto Ambiental Recursos Hídricos Tecnología Química