

NUEVO MÉTODO PARA CUANTIFICAR LA AUTORREPARACIÓN DE MATERIALES POLIMÉRICOS

DADES DE CONTACTE:

Relaciones con la Empresa Oficina de Transferencia de Resultados de la Investigación-OTRI Universidad de Alicante Tel.: +34 96 590 99 59 Email: areaempresas@ua.es http://innoua.ua.es

RESUM

El Laboratorio de Adhesión y Adhesivos de la Universidad de Alicante ha desarrollado un nuevo método (equipo y proceso) que permite determinar el grado de autorreparación y monitorizar la cinética de autorreparación de materiales poliméricos. El nuevo método también permite seguir el proceso de autorreparación de materiales compuestos (composites), materiales cerámicos, materiales basados en cemento, mortero u hormigón, y materiales textiles.

Esta invención destaca por ser un método sencillo, rápido y reproducible, y permite realizar varias medidas *in situ* en una misma muestra a distintas temperaturas y con distinta geometría y tamaño de los materiales.

El grupo busca empresas o instituciones interesadas en adquirir esta tecnología para su explotación comercial.

AVANTATGES I ASPECTES INNOVADORS

VENTAJAS DE LA TECNOLOGÍA

Las principales ventajas de esta tecnología son las siguientes:

- Método sencillo
- Método rápido
- Método eficiente
- Método reproducible
- No requiere la aplicación de estímulos externos (calor, radiación o reacciones químicas).
- Se pueden realizar varias medidas in situ en una misma muestra.
- La muestra puede tener cualquier geometría y con unas dimensiones y espesor de rango muy amplio.
- La muestra puede calefactarse a temperaturas superiores a la temperatura ambiente.
- El vástago y el elemento perforador permiten una rotación de 360°.
- La salida de flujo de gas del cuerpo principal del equipo de medida de la autorreparación está continuamente monitoreada mediante un sensor de flujo.

ASPECTOS INNOVADORES DE LA TECNOLOGÍA

Se trata del primer método y equipo de medida que permite medir de forma directa el grado de autorreparación y/o monitorizar la cinética de autorreparación en materiales. Esta invención supone un gran avance en el desarrollo e implantación de este tipo de materiales, con múltiples aplicaciones, en la sociedad.

Puede ser utilizado en todos los campos donde se trabaje con materiales autorreparables, por ejemplo, en el campo médico, biomateriales, cosmética, textil, tecnológico, recubrimientos, adhesivos, sellantes o espacial. COL·LABORACIÓ BUSCADA Se buscan empresas interesadas en adquirir esta tecnología para su explotación comercial mediante acuerdos de licencia de la patente.